203 research outputs found

    Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain

    Get PDF
    Genomic disorders are often caused by recurrent copy number variations (CNVs), with nonallelic homologous recombination (NAHR) as the underlying mechanism. Recently, several microhomology-mediated repair mechanisms-such as microhomology-mediated end-joining (MMEJ), fork stalling and template switching (FoSTeS), microhomology-mediated break-induced replication (MMBIR), serial replication slippage (SRS), and break-induced SRS (BISRS)-were described in the etiology of non-recurrent CNVs in human disease. In addition, their formation may be stimulated by genomic architectural features. It is, however, largely unexplored to what extent these mechanisms contribute to rare, locus-specific pathogenic CNVs. Here, fine-mapping of 42 microdeletions of the FOXL2 locus, encompassing FOXL2 (32) or its regulatory domain (10), serves as a model for rare, locus-specific CNVs implicated in genetic disease. These deletions lead to blepharophimosis syndrome (BPES), a developmental condition affecting the eyelids and the ovary. For breakpoint mapping we used targeted array-based comparative genomic hybridization (aCGH), quantitative PCR (qPCR), long-range PCR, and Sanger sequencing of the junction products. Microhomology, ranging from 1 bp to 66 bp, was found in 91.7% of 24 characterized breakpoint junctions, being significantly enriched in comparison with a random control sample. Our results show that microhomology-mediated repair mechanisms underlie at least 50% of these microdeletions. Moreover, genomic architectural features, like sequence motifs, non-B DNA conformations, and repetitive elements, were found in all breakpoint regions. In conclusion, the majority of these microdeletions result from microhomology-mediated mechanisms like MMEJ, FoSTeS, MMBIR, SRS, or BISRS. Moreover, we hypothesize that the genomic architecture might drive their formation by increasing the susceptibility for DNA breakage or promote replication fork stalling. Finally, our locus-centered study, elucidating the etiology of a large set of rare microdeletions involved in a monogenic disorder, can serve as a model for other clustered, non-recurrent microdeletions in genetic disease

    Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans.

    Get PDF
    Eight syndromes are associated with the loss of methylation at specific imprinted loci. There has been increasing evidence that these methylation defects in patients are not isolated events occurring at a given disease-associated locus but that some of these patients may have multi-locus imprinting disturbances (MLID) affecting additional imprinted regions. With the recent advances in technology, methylation profiling has revealed that imprinted loci represent only a small fraction of the methylation differences observed between the gametes. To figure out how imprinting anomalies occur at multiple imprinted domains, we have to understand the interplay between DNA methylation and histone modifications in the process of selective imprint protection during pre-implantation reprogramming, which, if disrupted, leads to these complex imprinting disorders (IDs).This is the author accepted manuscript. The final version is available from Cell Press (Elsevier) via http://dx.doi.org/10.1016/j.tig.2016.05.001

    CIBERER: Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    CIBER (Center for Biomedical Network Research; Centro de Investigacion Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mis sion is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low prevalence diseases, in line with the International Rare Diseases Research Consor tium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this arti cle, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Co-occurrence of neurofibromatosis type 1 and optic nerve gliomas with autosomal dominant polycystic kidney disease type 2

    Full text link
    Background: Autosomal dominant polycystic kidney disease (ADPKD) and neurofibromatosis type 1 (NF1) are both autosomal dominant disorders with a high rate of novel mutations. However, the two disorders have distinct and well-delineated genetic, biochemical, and clinical findings. Only a few cases of coexistence of ADPKD and NF1 in a single individual have been reported, but the possible implications of this association are unknown. Methods: We report an ADPKD male belonging to a family of several affected members in three generations associated with NF1 and optic pathway gliomas. The clinical diagnosis of ADPKD and NF1 was performed by several image techniques. Results: Linkage analysis of ADPKD family was consistent to the PKD2 locus by a nonsense mutation, yielding a truncated polycystin-2 by means of next-generation sequencing. The diagnosis of NF1 was confirmed by mutational analysis of this gene showing a 4-bp deletion, resulting in a truncated neurofibromin, as well. The impact of this association was investigated by analyzing putative genetic interactions and by comparing the evolution of renal size and function in the proband with his older brother with ADPKD without NF1 and with ADPKD cohorts. Conclusion: Despite the presence of both conditions there was not additive effect of NF1 and PKD2 in terms of the severity of tumor development and/or ADPKD progression.This study was financed in part by the Instituto de Salud Carlos III, the Ministerio de Ciencia y Innovación (EC08/00236) and the program for intensifying research activities (IdiPAZ and Agencia Lain Entralgo/CM) to R.P. or the program for intensifying (IdiPAZ and FIBHULP) to J.N. NF1 studies are supported by grants from Fundación Mutua Madrileña de Investigación Biomédica (FMM) and Asociación Española de Afectados de Neurofibromatosis. ISCIII RETIC REDINREN RD16/0009 FEDER Fund

    Prenatal phenotyping: A community effort to enhance the Human Phenotype Ontology

    Get PDF
    Human phenotype ontology; Prenatal diagnosis; Prenatal phenotypingOntología del fenotipo humano; Diagnóstico prenatal; Fenotipado prenatalOntologia del fenotip humà; Diagnòstic prenatal; Fenotipat prenatalTechnological advances in both genome sequencing and prenatal imaging are increasing our ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical preventive measures during the perinatal period, to plan in utero therapies, and to inform parental decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not well understood; more comprehensive knowledge about prenatal phenotypes and computational resources have an enormous potential to improve diagnostics and translational research. The Human Phenotype Ontology (HPO) has been widely used to support diagnostics and translational research in human genetics. To better support prenatal usage, the HPO consortium conducted a series of workshops with a group of domain experts in a variety of medical specialties, diagnostic techniques, as well as diseases and phenotypes related to prenatal medicine, including perinatal pathology, musculoskeletal anomalies, neurology, medical genetics, hydrops fetalis, craniofacial malformations, cardiology, neonatal-perinatal medicine, fetal medicine, placental pathology, prenatal imaging, and bioinformatics. We expanded the representation of prenatal phenotypes in HPO by adding 95 new phenotype terms under the Abnormality of prenatal development or birth (HP:0001197) grouping term, and revised definitions, synonyms, and disease annotations for most of the 152 terms that existed before the beginning of this effort. The expansion of prenatal phenotypes in HPO will support phenotype-driven prenatal exome and genome sequencing for precision genetic diagnostics of rare diseases to support prenatal care.European Commission; National Human Genome Research Institute; NIH Office of the Director; The European Union's EIT-Health Innovation Program bp2020-2022, Grant/Award Numbers: #211015, #20062; NIH Office of the Director (OD), the European Union's Horizon 2020 research and innovation program, Grant/Award Number: 779257; NHGRI, Grant/Award Numbers: 2R24OD011883-05A1, 1U24HG011449-01A

    Severe congenital nephrogenic diabetes insipidus in a compound heterozygote with a new large deletion of the AQP2 gene: A case report

    Full text link
    Background: Congenital nephrogenic diabetes insipidus (NDI) is a rare condition characterized by severe polyuria, due to the inability of the kidneys to concentrate urine in response to arginine vasopressin (AVP). In the majority of the cases, the disease shows an X‐linked inherited pattern, although an autosomal recessive inheritance was also observed. Methods: We report a patient with a severe NDI diagnosed during the neonatal period. Because the patient was female without a family history of congenital NDI, her disease was thought to exhibit an autosomal recessive form. Results: A full mutation analysis of AVP receptor 2 (AVPR2; MIM#300538) gene showed no mutations. However, direct Sanger sequencing of the aquaporin 2 (AQP2) revealed an apparently homozygous mutation at nucleotide position NM_000486.5:c.374C>T (p.Thr125Met) in exon 2. Further customized multiplex ligation‐dependent probe amplification (MLPA), single‐nucleotide polymorphism (SNP) array analysis, and long‐range polymerase chain reaction (PCR) followed by Sanger sequencing showed a heterozygous exonic deletion comprising exons 2, 3, and partially 4 of AQP2. Conclusion: This is the first case of a compound heterozygote patient with a missense mutation involving NM_000486.5:exon2:c.374C>T (p.Thr125Met) and a gross deletion of at least exons 2, 3, and partially 4 on the AQP2 to present with a severe NDI phenotypeThis study was supported in part by grants from the Research Activity Intensification Program (Programa Intensificación Actividad Investigadora) (IdiPAZ and Agencia Laín‐Entralgo/CM) to R.P. ISCIII RETIC REDINREN RD16/0009 FEDER FUNDS, and (Programa Intensificación Actividad Investigadora) (IdiPAZ and FIBHULP) to J.N

    Definition and clinical variability of SHANK3-related Phelan-McDermid syndrome

    Get PDF
    Phelan-McDermid syndrome (PMS) is an infrequently described syndrome that presents with a disturbed development, neurological and psychiatric characteristics, and sometimes other comorbidities. As part of the development of European medical guidelines we studied the definition, phenotype, genotype-phenotype characteristics, and natural history of the syndrome. The number of confirmed diagnoses of PMS in different European countries was also assessed and it could be concluded that PMS is underdiagnosed. The incidence of PMS in European countries is estimated to be at least 1 in 30,000. Next generation sequencing, including analysis of copy number variations, as first tier in diagnostics of individuals with intellectual disability will likely yield a larger number of individuals with PMS than presently known. A definition of PMS by its phenotype is at the present not possible, and therefore PMS-SHANK3 related is defined by the presence of SHANK3 haploinsufficiency, either by a deletion involving region 22q13.2–33 or a pathogenic/likely pathogenic variant in SHANK3. In summarizing the phenotype, we subdivided it into that of individuals with a 22q13 deletion and that of those with a pathogenic/likely pathogenic SHANK3 variant. The phenotype of individuals with PMS is variable, depending in part on the deletion size or whether only a variant of SHANK3 is present. The core phenotype in the domains development, neurology, and senses are similar in those with deletions and SHANK3 variants, but individuals with a SHANK3 variant more often are reported to have behavioural disorders and less often urogenital malformations and lymphedema. The behavioural disorders may, however, be a less outstanding feature in individuals with deletions accompanied by more severe intellectual disability. Data available on the natural history are limited. Results of clinical trials using IGF-1, intranasal insulin, and oxytocin are available, other trials are in progress. The present guidelines for PMS aim at offering tools to caregivers and families to provide optimal care to individuals with PMS.</p

    Familial imbalance in 16p13.11 leads to a dosage compensation rearrangement in an unaffected carrier

    Full text link
    Background: We and others have previously reported that familial cytogenetic studies in apparently de novo genomic imbalances may reveal complex or uncommon inheritance mechanisms. Methods: A familial, combined genomic and cytogenetic approach was systematically applied to the parents of all patients with unbalanced genome copy number changes. Results: Discordant array-CGH and FISH results in the mother of a child with a prenatally detected 16p13.11 interstitial microduplication disclosed a balanced uncommon rearrangement in this chromosomal region. Further dosage and haplotype familial studies revealed that both the maternal grandfather and uncle had also the same 16p duplication as the proband. Genomic compensation observed in the mother probably occurred as a consequence of interchromosomal postzygotic nonallelic homologous recombination. Conclusions: We emphasize that such a dualistic strategy is essential for the full characterization of genomic rearrangements as well as for appropriate genetic counselingFISH and aCGH materials were supported by grant 08/PI1207 from Fondo de Investigaciones Sanitarias (FIS) and research project ENDOSCREEN (S2011/BMD-2396) from Comunidad de Madri

    Abnormal bone turnover in individuals with low serum alkaline phosphatase

    Get PDF
    The clinical spectrum of hypophosphatasia (HPP) is broad and variable within families. Along severe infantile forms, adult forms with mild manifestations may be incidentally discovered by the presence of low alkaline phosphatase (ALP) activity in serum. However, it is still unclear whether individuals with persistently low levels of ALP, in the absence of overt manifestations of HPP, have subclinical abnormalities of bone remodeling or bone mass. The aim of this study was to obtain a better understanding of the skeletal phenotype of adults with low ALP by analyzing bone mineral density (BMD), bone microarchitecture (trabecular bone score, TBS), and bone turnover markers (P1NP and ß-crosslaps). We studied 42 individuals with persistently low serum ALP. They showed lower levels of P1NP (31.4?±?13.7 versus 48.9?±?24.4 ng/ml; p?=?0.0002) and ß-crosslaps (0.21?±?0.17 versus 0.34?±?0.22 ng/ml, p?=?0.0015) than individuals in the control group. There were no significant differences in BMD, bone mineral content, or TBS. These data suggest that individuals with hypophosphatasemia have an overall reduction of bone turnover, even in the absence of overt manifestations of HPP or low BMD. We evaluated bone mineral density (BMD), bone microarchitecture, and bone turnover markers in patients with low serum levels of alkaline phosphatase. Our results show that these patients have low bone remodeling even in the absence of BMD abnormalities, thus supporting the recommendation of avoiding antiresorptives such as bisphosphonates in these subjects
    corecore